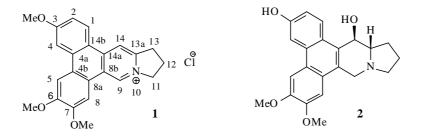
Two Phenanthroindolizidine Alkaloids from Tylophora atrofolliculata


Xue Shi HUANG, Shi Shan YU*, Xiao Tian LIANG

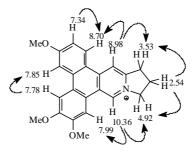
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: Two alkaloids tylophoridicine D (1) and tylophoridicine E (2) have been isolated from *Tylophora atrofolliculata*. The structures of the compounds were elucidated on the basis of spect -roscopic analysis.

Keywords: *Tylophora atrofolliculata*, tylophoridicine D, tylophoridicine E, phenanthroindolizidine alkaloid.

In order to search for antitumor components of *Tylophora atrofolliculata*, we investigated this species, which was collected in Guangxi province. Two alkaloids tylophoridicine D (1) and tylophoridicine E (2) were isolated. In this paper, we present the structure elucidation of these alkaloids. Their structures were determined as 3, 6, 7-trimethoxy-9 (10), 13a (14)-dehydrophenanthroindolizidinium chloride and (13a S, 14R)-3, 14-dihydr-oxy-6, 7-dimethoxyphenanthroindolizidine by NMR, IR, UV, CD and MS spectra.

Tylophoridicine D (1), yellow amorphous powder, has a molecular formula of $C_{23}H_{22}NO_3^+Cl^-$, as determined by ¹H-NMR, ¹³C-NMR, DEPT data (see **Table 1**) and $[M]^+$ at m/z 360 as well as silver chloride deposition reaction. The UV absorption at 260 (4.63), 286 (4.35) nm were similar to those of phenanthroindolizidine skeleton. The IR spectrum of 1 showed absorption of an N^{\oplus} group at 1211 cm⁻¹. In ¹H-NMR spectrum, the signals at δ 4.05 (*s*, 3H), 4.04 (*s*, 3H), 4.03 (*s*, 3H) showed the presence of three methoxyl groups connected to an aromatic ring. The signals of four aromatic


^{*}E-mail: huangxs@imm.ac.cn

Xue Shi HUANG et al.

pro-tons at δ 10.36, 8.98, 7.99, 7.78 in the ¹H-NMR spectrum appeared as sharp singlets, while the other three signals at δ 8.70 (*d*, 1H, *J* = 9.2 Hz), 7.85 (*d*, 1H, *J* = 2.5 Hz), 7.34 (*dd*, 1H, *J* = 9.2, 2.5 Hz) formed an AMX system. The spectral data of **1** were similar to those of tylophorine¹ except for ring D, which showed to be an aromatic ring in **1**.

The foregoing evidence suggested that **1** possessed a skeleton of phenanthroindolizidine alkaloid with three methoxyls and an aromatic ring D. Positions of the methoxyl groups and the other protons were confirmed by NOESY (see **Figure 1**).

Figure 1 NOESY correlation of compound 1

Assignment of ¹H-NMR and ¹³C-NMR data was made by the aid of HMQC and HMBC spectra of **1** (see **Table 1**). On the basis of the above evidence, the structure of **1** was concluded to be 3, 6, 7-trimethoxy-9(10), 13a(14)-dehydrophenanthroindolizidini -um chloride. T. R. Govindachari has mentioned this alkaloid, but without spectroscopic identification of the structure ³.

Tylophoridicine E (2), brown amorphous solid, $[\alpha]_{D}^{16}$ +67.2 (*c* 0.55, CHCl₃) has a molecular formula C₂₂H₂₃NO₄, as determined by ¹H-NMR, ¹³C-NMR data (see **Table 2**) and $[M]^+$ at m/z 365. The fragment peak at 296 $[M-69]^+$ was due to the loss of dihydropyrrole by RDA fission, and suggested the presence of tetrahydropyrrole ring. The IR spectrum of 2 showed absorption of hydroxyl group at 3427 cm^{-1} . The UV absorptions at 260 (4.26), 285 (4.10), 310 (sh, 3.88) nm were similar to those of phenanthroindolizidine skeleton. Addition of 1 mol/L NaOH solution, caused a bathchromic shift, typical for the phenolic hydroxyl group. In the ¹H-NMR spectrum of 2, the signals at δ 3.98 (s, 3H) and 3.88 (s, 3H) showed the presence of two methoxyl groups connected to an aromatic ring, the signals at δ 4.34 (*d*, 1H, *J* = 14.5Hz) and 3.36 (d, 1H, J = 14.5Hz) were assigned to 9 α and 9 β protons. Five aromatic proton signals were observed in the ¹H-NMR spectrum, δ 7.87 (s, 1H), 7.03 (s, 1H) were sharp singlets, while the other three signals at δ 8.13 (*d*, 1H, *J* = 9.0Hz), 7.10 (*dd*, 1H, J = 9.0, 2.0Hz) and 7.90 (d, 1H, J = 2.0Hz) formed an AMX system. The spectral data of rings D and E of 2 were similar to those of tylophorinidine¹, which suggested that 2 has the same structure as tylophorinidine in rings D and E. The foregoing evidence suggested that compound 2 possessed a skeleton of phenanthroindolizidine alkaloid with two methoxyls, one phenolic hydroxyl and one aliphatic hydroxyl. The

Two Phenanthroindolizidine Alkaloids from *Tylophora Atrofolliculata* 63

positions of methoxyl and hydroxyl groups, and the other protons were confirmed by NOESY (see Figure 2).

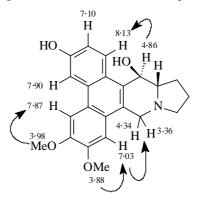


Figure 2 NOESY correlation of compound 2

Table 1	The NMR da	ta and the major correlations from the HMBC	2	
		tylophoridicine D (DMSO-d ₆)	tylophoridicine D (DMSO-d ₆)	

position.	¹ H-NMR (δ ppm, <i>J</i> Hz)	¹³ C-NMR	HMBC (carbon)
1	8.70(1H, d, J=9.2)	127.95	3, 4a, 14a
2	7.34(1H, dd, J=9.2, 2.5)	115.87	4, 14b
3		162.29	
4	7.85(1H, d, J=2.5)	106.49	2, 3, 4b, 14b
4a		134.28	
4b		123.92	
5	7.78(1H, s)	105.34	6, 7, 4a, 8a
6		150.31	
7		150.64	
8	7.99(1H, s)	104.93	6, 7, 4b, 8a
8a		120.29	
8b		123.29	
9	10.36(1H, s)	138.28	8a, 8b, 11, 14a, 13a
11	4.92(2H, <i>m</i>)	57.99	9,12
12	2.54(2H, <i>m</i>)	21.79	11, 13
13	3.53(2H, <i>m</i>)	31.01	12, 13a
13a		150.89	
14	8.98(1H, <i>s</i>)	115.87	8b, 13a, 13, 14b
14a		139.02	
14b		118.18	
MeO	4.05 (3H, s)	56.33	
MeO	4.04(3H, <i>s</i>)	56.02	
MeO	4.03(3H, s)	56.84	

Note: The assignment was based on DEPT, NOESY, HMQC and HMBC experiments. 500 MHz for $^{1}\mathrm{H}\text{-}\mathrm{NMR}$, 125 MHz for $^{13}\mathrm{C}\text{-}\mathrm{NMR}$, HMBC

of

Xue Shi HUANG et al.

The CD spectrum of **2** showed a negative Cotton effect, indicating an *S* absolute configuration for C-13a². The ¹H-NMR line of 13a-H was significantly broadened upon addition of a small quantity of DCl, which suggested that the lone pair of nitrogen electrons is on the same side with 13a-H⁴; so the absolute configuration of C-14 is *R* since the dihedral angle between 13a and 14 protons is close to 90°, the H-14 signals appeared as a singlet. Therefore, the structure of **2** was established to be (13aS, 14R)-3, 14-dihydroxy-6, 7-dimethoxy-phenanthroindolizidine. This alkaloid was a new compound.

 Table 2
 ¹H, ¹³C-NMR data of tylophoridicine E (DMSO-d₆)

position	¹ H-NMR (δ ppm, J Hz)	¹³ C-NMR
1	8.13 (1H, d, J=9.0)	126.21
2	7.10 (1H, dd, J=9.0, 2.0)	116.04
3		155.08
4	7.90 (1H, d, J=2.0)	105.87
5	7.87 (1H, <i>s</i>)	103.92
6		149.04
7		148.51
8	7.03 (1H, s)	103.79
9	4.34 (1H, d, J=14.5)	53.34
	3.36 (1H, d, J=14.5)	
11	2.29 (1H, m), 3.25 (1H, m)	54.70
12	1.79(2H, <i>m</i>)	21.47
13	2.18 (1H, m), 1.79 (1H, m)	23.64
13a	2.34 (1H, <i>m</i>)	64.76
14	4.86 (1H, <i>s</i>)	63.41
6-MeO	3.98 (3H, s)	55.41
7-MeO	3.88 (3H, s)	55.41
C ring		130.47
-		129.51
		125.18
		124.13
		123.89
		123.29

Note: The assignment was based upon DEPT, NOESY and ¹H-¹³C COSY experiments. 500 MHz for ¹H-NMR, 125 MHz for ¹³C-NMR.

Acknowledgments

The financial support of the National Key Basic R&D (973) Programe (No. G1998-051120) are gratefully acknowleged.

References

- 1. Institute of Medical and Pharmaceutical Science of Guangxi (Nanning), *J. Biochem. Biophys* (in Chinese) **1977**, *9* (2), 131.
- 2. E. Gellert, R. Rudzats, and J. C. Craig, Aust. J. Chem., 1978, 31, 2095.
- 3. T. R. Govindachari, N. Viswanathan, Indian J. of Chem., 1973, 11, 1215.
- 4. J. D. Phillipson, I. Tezcan, P. J. Hylands, *Planta Medica*, **1974**, 25, 301.

Received 22 May, 2001